AIS

MAINTENANCE MANUAL

tediselmedical.com

Content

1.	Man	ufac	turer	4	
2.	Secu	Security information			
2	.1.	Inju	ry risk warnings	4	
2	.2.	War	nings of risk of damage	4	
2	.3.	Sup	plementary symbols used in the safety instructions	5	
2	.4.	Indi	cation of additional information	5	
2	.5.	Prop	per use of oxygen	5	
	2.5.2	L.	Oxygen explosion	5	
	2.5.2	2.	Fire hazard	5	
3.	Risk	5		6	
3	.1.	Gas	explosion	6	
3	.2.	Risk	of device malfunction	6	
3	.3.	Fire	risk	6	
3	.4.	Dan	ger of electric shock	6	
4.	Sym	bols	used	6	
5.	Proc	luct o	data	9	
5	.1.	Stor	age conditions	9	
5	.2.	Ope	rating conditions	9	
5	.3.	Serv	vice life	9	
5	.4.	Purp	pose of the product	9	
6.	Maii	ntena	ance	.10	
6	5.1.	Trai	ning	.10	
6	.2.	Rem	noval and installation of covers	.10	
	6.2.2	L.	Removing / folding down the hinged front cover	.10	
	6.2.2	2.	Removing the central cover of the gas rail	.10	
	6.2.3	3.	Removal / folding down of the power rail cover	.11	
6	.3.	Med	lical gas supply circuits	.12	
6	.4.	. Electrical and voice and data circuits, lighting13			
6	.5.	Rep	lacement of LED strips and drivers in lighting module s	.13	
6	.6.	Enve	elopes and structural elements	.14	
6	5.7.	Mai	ntenance plan	.15	
7.	Clea	ning		.17	

AIS

8.	Waste management1		
9.	Reg	ulations	.18
ç	9.1.	Team ranking	.18
ç	9.2.	Reference standards	.18
ç	9.3.	Electromagnetic compatibility.	.18

1. Manufacturer

Manufacturer: TEDISEL IBÉRICA S.L. Address: C/ Sant Lluc, 69-81. 08918 - Badalona (Barcelona) SPAIN Tel. +34 933 992 058 Fax +34 933 984 547 tedisel@tedisel.com www.tediselmedical.com

2. Security information

Important notes in these operating instructions are marked with graphic symbols and signal words.

2.1. Injury risk warnings

Signal words such as DANGER, WARNING or CAUTION describe the degree of risk of injury. The different triangular symbols visually emphasise the degree of danger.

WARNING	Refers to a potentially hazardous situation which, if not avoided, could result in death or serious injury.
CAUTION	Refers to a potential hazard which, if not avoided, may result in minor or slight injury.
DANGER	Refers to an immediate danger which, if not avoided, will result in death or serious injury.
	Risk of finger entrapment

2.2. Warnings of risk of damage

The signal word WARNING describes the degree of risk of material damage. The triangular symbol visually emphasises the degree of danger.

Damage to surfaces: warns of damage to surfaces due to unsuitable cleaning agents and disinfectants.

Refers to a potential hazard which, if not avoided, may cause damage to the equipment.

2.3. Supplementary symbols used in the safety instructions

Fire hazard

NOTICE

Explosion hazard: warns of ignition of explosive gas mixtures.

Dangerous voltage: warns of electric shock that can cause serious injury or death.

2.4. Indication of additional information

A NOTE provides additional information and useful tips for safe and efficient use of the device.

2.5. Proper use of oxygen.

2.5.1. Oxygen explosion

Oxygen becomes explosive when it comes into contact with oils, greases and lubricants.

Compressed oxygen presents an explosion hazard:

- Make sure that oxygen and gas outlets are free of oil, greasy materials and lubricants!
- Do not use cleaning agents containing oil, grease or lubricants.

2.5.2. Fire hazard

Escaping oxygen is fuel:

- Open fire, red-hot objects and open light are not allowed when working with oxygen!
- Don't smoke!

Maintenance Manual

3. Risks

3.1. Gas explosion

Oxygen becomes explosive when it comes into contact with oils, greases and lubricants.

When in contact with oxygen in the air, medical gases may form an explosive or easily flammable gas mixture. The equipment is not suitable for use in environments containing flammable mixtures of anaesthetics with high concentrations of oxygen or nitrous oxide.

If such high concentrations of flammable mixtures of anaesthetics with oxygen or nitrous oxide occur in the environment of the device, there is a risk of ignition under certain conditions.

3.2. Risk of device malfunction

CAUTION: If a device is connected to the equipment and trips the protection mechanism of the corresponding circuit in the health care facility, other devices connected to the equipment will also be de-energised.

3.3. Fire risk

Plug-in connections for the supply of medical gases must not come into contact with oil, grease or flammable liquids.

3.4. Danger of electric shock

Signal cables (network, audio, video, etc.) must be electrically isolated from equipment and the ends of building connections to prevent contact with currents that can cause serious injury or death.

4. Symbols used

Equipotentiality

SIF

AIS

Maintenance Manual

Protective earth (ground)

Connection point for neutral conductor

Nurse call button

Direct lighting

Indirect lighting

Operating instructions

Health Product

Waste electrical equipment

C € 0197

CE symbol

Product code

Unique identification code

Serial number

Manufacturer

Date of manufacture

Reference to the instruction manual

Damage to surfaces

Fire hazard

Danger of explosion

Dangerous tension

Notice

Risk of finger entrapment

Warning

Caution

Danger

5. Product data

This manual refers to the AIS model. This model is part of the SICA family.

5.1. Storage conditions

The individual packaging of this type of product consists of a bubble wrap on the inside and a cardboard box on the outside. Non-stackable packaging.

Under no circumstances should the product be stored with open or damaged packaging. If the product is inspected on receipt and installation is not carried out within 1 day, the product packaging must be resealed.

NOTICE: Failure to follow these instructions may result in damage to the equipment. Recommended temperature range: -20 °C to 60 °C Recommended humidity range: 10 % to 75 %. Atmospheric pressure: 500 hPa to 1,060 hPa

5.2. Operating conditions

NOTICE: Failure to follow these instructions may result in damage to the equipment.

Recommended temperature range: -10 °C to 40 °C

Recommended humidity range: 30 % to 75 %.

Atmospheric pressure: 700 hPa to 1,060 hPa

5.3. Service life

The useful life of the SICA family of products is determined by the useful life of the medical gas intakes it incorporates, which is 8 years.

5.4. Purpose of the product

These systems have three main distinct functions within the hospital:

- Medical gas services
- Electrical, voice and data services
- Lighting
- Nurse call

They consist of a chassis made of aluminium profiles, which integrates the electrical equipment, call, voice and data systems, and installation and channelling of medical gas outlets.

6. Maintenance

6.1. Training

The personnel doing the MAINTENANCE must be properly trained and qualified by the customer. Persons who:

1. have received the training and are duly registered (at those levels where legal provisions make such registration necessary).

2. have been instructed in the maintenance of this device by means of this instruction manual as a basis.

3. are able to assess the tasks they perform on the basis of their own professional experience and training in relevant safety standards and can recognise the potential hazards involved in the work.

6.2. Removal and installation of covers

6.2.1. Removing / folding down the hinged front cover

• Remove the screw 1 to be able to remove the hinged front cover 2 as shown in figure 1.

Fig.1 Removing the hinged front cover

• To put it back in place, simply click it into position, leave it in its resting position (resting on the central gas cap) and retighten the screw ①.

6.2.2. Removing the central cover of the gas rail

- Remove the hinged front cover as described in point 6.1.1.
- Use the suction cup ① to remove the cover of the central profile ②. This will give access to the wall mounting points ③ and the gas ducts of the unit.

• To replace the central gas cap, place it in position and press until you hear the clipping sound.

Fig.2 Removal of the inner centre cover

- 6.2.3. Removal / folding down of the power rail cover.
- Remove the M4 countersunk screws DIN 965 ③ and fold down the power rail cover ④ as shown in the illustration. The cover is suspended by its pivot axis.

Fig.3 Opening of the electrical profile cover

• To replace the cover, close it manually until it makes contact with the chassis of the device and refit the M4 DIN 965 countersunk screws (3).

- Check that the cover is securely in place.
- 6.3. Medical gas supply circuits

It is recommended that the equipment be disconnected electrically before servicing.

• Remove the hinged front cover and the central flue gas cover.

See point 6.1 of this manual

Passage	Description		Periodicity	Tools/supplies
1	Detaile	d Visual Inspection:	Annual	Screwdriver set,
	A)	Perform a thorough visual inspection of all		protective gloves,
		interior ductwork for signs of wear or		torch, torch, etc.
		damage.		
2	Leak De	etection:	Biannual	Soap solution, brush
	A)	Prepare a soap solution in a container.		or paintbrush
	B)	With a brush or paintbrush, apply the		
		solution to the junction points of the piping		
		to the gas terminal units, and other soldered		
		connections.		
	C)	Watch for bubbles to form, indicating the		
		presence of a leak.		
	D)	If a leak is detected, mark the area for later		
		correction.		
3	Verifica	tion of gas terminal brackets:	Annual	Hand tools,
	A)	Physically assess the condition and integrity		protective gloves
		of the trunking supports. Check for wear or		
		structural damage.		
	B)	Ensure that the brackets are firmly fixed to		
		the profile and that there is no movement or		
		play in the brackets.		
4	Mainte	nance Register:	Always	Maintenance log
	A)	After each inspection or intervention, record		
		in a document or management system all		

	details, such as date, findings, actions taken, name of technician, and parts replaced.	
B)	Keep this record organised and accessible	
	for future reference and audits.	

Additional note: Be sure to follow all relevant safety regulations and recommendations. It is essential that personnel involved in these tasks are properly trained and wear personal protective equipment.

6.4. Electrical and voice and data circuits, lighting

It is recommended that the equipment be disconnected electrically before servicing.

- Remove the hinged front cover and the power rail cover.
- Carry out a visual inspection of the condition of internal piping.

See point 6.1 of this manual

- Sockets: Check the voltage at each of the equipment's sockets.
- Lighting: Check the switching on/off from the push buttons on the equipment and/or from the call control.
- Voice and data: Check each of the mechanisms of the equipment and call control. To be carried out by the centre's IT and communications staff.

6.5. Replacement of LED strips and drivers in lighting module s

If the lighting modules of the AIS system malfunction, both the LED strips (2) and the controllers (1) shall be replaced.

Disconnect the equipment electrically before replacement.

- Fold down the power rail cover as described in point 6.1.3 of this manual. The lighting module shall be exposed.
- Disconnect the quick connector from the LED strip 2.
- Disconnect the power supply of the controller ① from the terminal strip.
- Unscrew the M4 x16 hex screws ③ DIN 933 releasing the tab ④ holding the controller ① and LED strip ②.

Fig.4 Replacing LED strips and controllers

- Attach the LED strip (2) and secure it with an M4 x16 hex screw (3) (the one that is not used to secure the tab (4) that holds the driver).
- Fit the new controller (1) and secure it with the tab (4) by screwing in the second hexagonal screw (3).
- Connect the power supply of the controller ① back to the terminal strip.
- Connect the power supply quick connector of the newly installed LED strip (2).
- Check that the lighting module is fixed in position.
- Power up the lighting circuit and perform a test run to check that the lighting module switches on and off.

• Put the covers back in place.

6.6. Envelopes and structural elements

Carry out a visual inspection to detect if any item is not properly fixed.

In case of suspicion, carry out a physical check of the elements and refasten them properly.

SIF

6.7. Maintenance plan

ltem to be	Description	Periodicity	Method of inspection
inspected			
Gas outlets	Inspection of medical gas intakes*.	Annual	Visual inspection and functional test Ease of connection and disconnection manoeuvres Wear and tear or damage Marking and labelling
Copper gas connection I	Overhaul and status check*. It is recommended to disconnect the equipment electrically before proceeding with the overhaul.	Annual	Visual inspection Verification of supports See point <i>6.3 Medical gas supply</i> <i>circuits</i>
Copper gas connections II	Overhaul and status check*. It is recommended to disconnect the equipment electrically before proceeding with the overhaul.	Biannual	Leak detection See point <i>6.3 Medical gas supply</i> <i>circuits</i>
LED lighting	Testing of LED strips for direct and indirect light	Half-yearly	Visual inspection and function test See points 6.5 Replacement of LED strips and drivers in lighting modules
Nurse call	Operation of the call system	Half-yearly	Simulation of call and system response. Ensure effective communication with nursing
Switches	Checking of the lighting actuation	Annual	Functional test. Check operability
RJ45 sockets	Inspection of voice and data sockets	Annual	Connecting to devices and testing data transfer
Electrical outlets	Verification of equipment power supply*.	Half-yearly	Use of a multimeter to check supply voltage and continuity (3), and

			connection of devices
Electrical and	Review and check of status and	Annual	Visual inspection and functional test.
data cabling	functionality*.		Check connections, and correct
	It is recommended to disconnect the		signalling.
	equipment electrically before		Check according to applicable
	proceeding with the overhaul.		regulations
			See section 6.4 Electrical, voice and
			data circuits, lighting, etc.
Entrances (gas	Checking pipe and electrical	Annual	Visual inspection. Check
and electrical)	connections*.		connections, absence of obstructions
			and correct marking.
Video & audio	Operation of HDMI and USB sockets,	Annual	Device connection and
outlets	etc.		data/video/audio transfer
Protection	Verification of earths and	Annual	Use of a multimeter (3) for
mechanisms	protections*.		continuity tests
Treatment and	Check paint condition	Annual	Visual inspection and tactile test (4)
finishing			
Vinyls and	Check condition of vinyls and plates	Annual	Visual inspection and tactile test (4)
phenolics			
Headwalls	Inspection of the headwalls and their condition	Annual	Visual inspection and tactile test (4)

Damaged, deformed or missing components must be replaced as soon as possible. In that case contact the supplier of the Equipment.

*If one of the above points is found to be non-compliant during the inspection, the system must be shut down immediately as a precautionary measure to prevent further damage to persons and equipment. Notify the system supplier immediately.

(3) Use of the multimeter:

• It shall be used to verify that electrical outlets and related components are operating correctly. With it, values such as voltage (to ensure that the sockets are providing the correct

voltage), resistance (to identify possible faults or short circuits) and continuity (to ensure that circuits are complete and there are no interruptions) can be measured.

(4) Tactile test:

 This refers to using touch to evaluate a surface or component. For example, by running the hand or fingers over the paint on a structure, one can determine if there are any irregularities, bumps or flaking.

7. Cleaning

Perform this operation with slightly moist cleaning instruments to ensure that no liquid enters the equipment. Since no part or component of the system is invasive, sterilisation is not necessary.

Do not use abrasive or very hard cleaning agents that may cause damage to the exterior coatings, such as disinfectants containing sodium hypochlorite, which is highly corrosive to aluminium.

WARNING: Damage to equipment may occur.

Formaldehyde-free disinfectants such as Saint Nebul Ald from Proder Pharma are recommended. Method of application:

- 1. Dilute 4 pulses of the valve supplied by the manufacturer per 5 litres of water.
- 2. Spray the compound on the product and let it react for 15 minutes.
- 3. Remove with water or soap solution with a wrung out cloth.

Switch off the power supply

Contact with live parts can cause an electric shock.

- Always disconnect the device from the main power supply before cleaning and disinfecting it.

- Do not insert objects into the openings of the device.

8. Waste management

Applies WEE2012/19 and RoHS directive 2011/65/EU, amendment 2015/863/EU. The equipment has electrical and electronic components, so it cannot be disposed of as organic waste, but as electrical/electronic waste.

9. Regulations

9.1. Team ranking

According to the new **MDD** regulation **93/42/EEC** on medical devices, this product family is classified as:

- Class IIb, by Annex II, excluding section 4, regulation 11.
- Protection level IP20 according to IEC 60529

Equipment intended for continuous operation.

9.2. Reference standards

The device complies with the safety requirements of the following standards and directives:

ISO11197: Medical supply units

IEC 60601-1: Medical electrical equipment. General requirements for basic safety and essential performance.

IEC 60601-1-2: Medical electrical equipment. Part 1-2. General requirements for basic safety and essential performance. Collateral standard. Electromagnetic disturbances.

9.3. Electromagnetic compatibility.

According to EN 60601-1-2:2015 this equipment is intended for use in the electromagnetic environment specified below. The user of this equipment must satisfy himself that it is being used in such an environment.

Interference emission	Compliance	Comment
measurements		
HF emissions according to	Group 1	The supply unit uses HF energy exclusively for its
CISPR 11 standard		internal OPERATION. Therefore, its HF emissions are
		minimal and interference with devices in its vicinity
		is unlikely.
HF emissions according to	Class A	The roof supply unit is suitable for use in non-
CISPR 11 standard		domestic installations and in installations that are
Harmonic emissions	Class A	directly connected to the PUBLIC SUPPLY NETWORK,
according to the standard		which also supplies residential buildings.
IEC 61000-3-2		
Emissions of voltage	In accordance	

fluctuations/transients in	with	
accordance with the standard		
IEC 61000-3-3		

Interference resistance	Test level according	Level of compliance	Environment/Guidelines
	to IEC 60601		
Static Electric	±8 kV contact	±8 kV contact	Floors should be made of
Discharge (ESD)	discharge	discharge	wood, concrete or ceramics. If
according to IEC	15 kV aerial	15 kV aerial discharge	the floor is covered with a
61000-4-2	discharge		synthetic material, the
			relative air humidity should
			be at least 30%.
Fast transient	±2 kV for power	±2 kV for power supply	The quality of the supply
electrical	supply cables	cables	voltage should be typical for a
interference	+1kV for input	+1. kV for incoming and	commercial or hospital
amplitudes / bursts	and output cables	outgoing cables	environment.
according to the			
norm			
IEC 61000-4-4			
Overvoltages	±1 kV phase-to-	±1 kV phase-to-phase	The quality of the supply
(waves) according to	phase voltage	voltage	voltage should be typical for a
IEC 61000-4- 5	±2 kV phase to	±2 kV phase to ground	commercial or hospital
	ground voltage	voltage	environment.
Voltage dips and	100% of UN fall for	100% UN drop for	The quality of the supply
fluctuations of the	0.5 period 100% of	0.5 period	voltage should be typical for a
supply voltage	UN fall for 1 period	100% drop in UN for 1	commercial or hospital
according to the	30% of UN fall for 25	period 30% drop in UN	environment.
standard	periods	for 25 periods	If the user of the roof supply
IEC 61000-4- 11		·	unit requires continuous
	Remark:		operation even in case of
	UN is the AC mains		power supply interruptions, it
	voltage before		is recommended to supply the
	applying the test		roof supply unit from a device
	level.		with an uninterruptible power
			supply or a battery.

AIS

Short interruptions of the supply voltage according to the standard IEC 61000-4- 11	100% for 5 s Remark: UN is the AC mains voltage before applying the test level.	30 A/m	The quality of the supply voltage should be typical for a commercial or hospital environment. If the user of the roof supply unit requires continuous operation even in case of power supply interruptions, it is recommended to supply the roof supply unit from a device with an uninterruptible power supply or a battery.
Magnetic field for	30 A/m	30 A/m	The magnetic fields created
power supply			by the mains frequency
frequencies (50/60			should be those of a
Hz) according to the			commercial or hospital
standard			environment.
IEC 61000-4-8			

U		
	1	
	4	

Interference resistance	Level of verification according to IEC 60601	Level of compliance	Environment/Guidelines	
HF interference	3 Vrms 150 kHz to 80 MHz 6 Vrms ISM band	3 Vrms 6 Vrms	AM 1KHz modulation	
induced by			Depth 80% Depth 80%	
IEC 61000-4-6			Depth 80% Depth	

HF interference	RANGE	FREQUENCY	MODULATION	STEP	LEVEL	
	A	80-1000MHz	AM 1 kHz Prof: 80%	LOG 1%	10 V/m	
induced by	В	1000-2000MHz	AM 1 kHz Prof: 80%	LOG 1%	10 V/m	
	С	2000-2700MHz	AM 1 kHz Prof: 80%	LOG 1%	10 V/m	
IEC 61000-4-3	D	385MHz	PM 18 Hz Cycle: 50%	-	27 V/m	
120 01000-4-3	E	450MHz	FM 1 kHz Desv:± 5 kHz	-	28 V/m	
	F	810-930MHz	PM 18 Hz Cycle: 50%	-	28 V/m	
	G	1720-1970MHz	PM 217 Hz Cycle: 50%	-	28 V/m	
	Н	2450MHz	PM 217 Hz Cycle: 50%	-	28 V/m	
	I	5240-5785MHz	PM 217 Hz Cycle: 50%	-	9 V/m	

Safety distance depending on emission frequency Environment/Guidelines				
150 kHz to 80	80 MHz up to	800 MHz up to 2.5 GHz		
MHz	800 MHz	D = 2, 3 P		
D = 1,2 P	D = 1,2 P			
0,12	0,12	0,23		
0,38	0,38	0,73		
1,2	1,2	2,3		
3,8	3,8	7,3		
12	12	23		
	Safety distance depending 150 kHz to 80 MHz D = 1,2 P 0,12 0,38 1,2 3,8 12	Safety distance depending on emission frequency 150 kHz to 80 80 MHz up to MHz 800 MHz D = 1,2 P D = 1,2 P 0,12 0,12 0,38 0,38 1,2 1,2 3,8 3,8 12 12		

AIS